ALLYLIC PHOSPHINE OXIDES AS PRECURSORS OF DIENES OF DEFINED GEOMETRY:

SYNTHESIS OF $3-$ DEOXYVITAMIN D₂

B. Lythgoe: T. A. Moran, M. E. N. Nambudiry, S. Ruston,

J. Tideswell, and P. W. Wright

Department of Organic Chemistry, The University, Leeds LS2 9JT

(Received in UK 21 Augut 1975; accepted for publication 22 September 1975)

The observation, that geometrically homogeneous allylic phosphonium bromides can be used in Wittig reactions to give conjugated dienes in which the original (\underline{z}) - or (\underline{E}) -geometry is retained, was first made¹ during synthesis of dienes related to vitamin D. The method has since been used successfully in other fields 2 , although its application may have been restricted by difficulties sometimes found³ in preparing the required homogeneous phosphonium salts. We now report methods for the preparation of geometrically homogeneous allylic diphenylphosphine oxides, which we have used in Horner⁴ reactions to provide an efficient and convenient synthesis of conjugated dienes of defined geometry.

Our work concerns allyl derivatives unsubstituted at C_{α} , and with one or two substituents at C_{γ} . At the outset, only one allylic phosphine oxide had been used for diene synthesis⁵. We found that the ylids, generated using butyl-lithium, reacted at C_α ; reaction at C_γ was unimportant. It was not necessary to isolate, and later decompose $^7\!$, a hydroxy phosphine oxide; the initial adduct eliminated lithium diphenylphosphinate completely within 2 hr. at 25 $^{\circ}$. Thus cyclohexylidene-ethyl diphenylphosphine oxide and cyclohexanone gave dicyclohexylidene-ethane directly in 80% yield.

3863

For preparing the phosphine oxides, the appropriate geometric form of the allylic alcohol was first converted into the $2,6$ -dichlorobenzoate by reaction with the acid and dimethylformamide dineopentyl acetal⁹. Treatment (THF; -20^o) with lithium diphenylphosphide, followed by oxidation with hydrogen peroxide, gave material from which pure phosphine oxide (yield $>80\%$) was readily obtained¹⁰. Thus the (Z)-isomer (1), m.p. 112 \cdot 5⁰, was obtained from (Z)-crotyl alcohol, uncontaminated by the (\underline{E}) -isomer (2) , m.p. 119⁰; and the pure (E) isomer (3), m.p. 119^o, was similarly obtained [from (E) -3-methylpent-2-enol], uncontaminated by its (2) -isomer, m.p. 113⁰.

Geometry was best maintained when the ylids were generated, and treated with the carbonyl compound, at ca. -70 $^{\circ}$ (THF); the mixture was then brought gradually to 25^o. In this way, the (2) -compound (1) and cyclohexanone gave (yield, 72%) the (\underline{z}) -diene $(\underline{4})$ containing $(g.1.c.)$ \leq 3% of the (E) -diene (5), which was obtained in a similar state of purity from the (E) -phosphine oxide $(\underline{2})$. The (\underline{Z}) -diene $(\underline{4})$ had $\lambda_{\text{max}}^{\text{EWH}}$ 241 nm (ε 27,700) (sh. at 234 and 249), whereas ($\frac{5}{2}$) had λ_{\max} 233, 240 (ϵ 32,000) (sh. at 247 nm); for n.m.r. data, see the Table. The (E)-diene (6) ($>$ 95% pure) was similarly obtained from the phosphine oxide (3) .

Compound	H^a	H_p	H_C	H^d
(4)	τ 3.96, d;	τ 3.8 dd of q's;	τ 4.6 dg:	τ 8.25 dd;
	J_{ab} 12 Hz	J_{ab} 12, J_{bc} 10,	\underline{J}_{bc} 10,	$J_{\rm cd}$ 7,
		$J_{\rm bd}$ 1.5 Hz	J_{cd} 7 Hz	\underline{J}_{bd} 1.5 Hz
(5)	τ 4.25, d;	τ 3.7 dd of q's:	τ 4.4 dg;	τ 8.23 dd;
	J_{ab} 10.5 Hz	\underline{J}_{ab} 10.5, \underline{J}_{bc} 15,	\underline{J}_{bc} 15,	\underline{J}_{cd} 6.5,
		I_{bd} 1.5 Hz	J_{cd} 6.5 Hz	J_{bd} 1.5 Hz

Table. Isomeric Crotylidenecyclohexanes: N.m.r. Data (CDCl₃)

obtained at 90 MHz with the aid of spin-decoupling experiments

The value of the new methods is further shown by their application to the (\underline{Z})-dienol (\underline{Y})¹¹, which was so converted into the phosphine oxide ($\underline{8}$), m.p. 98⁰. The corresponding ylid reacted with the ketone $(2)^{12}$ to give (yield 70%) 3-deoxyvitamin D₂ (12), m.p. 41[°], λ_{max} (EtOH with a little hexane) 263.5 nm (ε 17,600); v^{film} 1645m, 1630m, 1605w, 892vs cm⁻¹; $\tau_{CDCl_{\chi}}$ 3.88, dd, <u>J</u> 11.5 (H-6 and -7); 4.79, m, M_{χ} 9.5 (H-22 and -23): 5.01, d, <u>J</u> 1.5 (H-19); 5.23, d, <u>J</u> 2.5 Hz (H-19) 9.42, s, $\overline{CH_3-18}$; $\left[\alpha\right]_D^{22}$ + 13.0° (CHCl₃)¹³. The deoxyvitamin was identified by comparison with material obtained by an earlier, photochemical, route 14 . Reaction of Heilbron's 15 C₂₁ $\alpha\beta$ -unsaturated aldehyde and cyclohexanone gave the (E)-dienone (10), m.p. 63-64⁰; its (Z)-isomer (11), obtained by irradiation¹⁴, was converted into (12) by the Wittig method.

References

- 1. I. T. Harrison and B. Lythgoe, <u>J. Chem. Soc</u>., 1958, 843.
- 2. E. W. Truscheit and K. Eiter, <u>Annalen</u>, 1962, <u>658</u>, 65; <u>lv</u> F. Naf, R. Decorzant, Thommen, B. Willhalm, and G. Ohloff, Helv. Chim. Acta, 1975, 58, 1016.
- G. B. 3. G. Pattenden and B. C. L. Weedon, <u>J. Chem. Soc. (C</u>), 1968, 1984; R. Bausch
B. Bogdanowić, H. Dreeskamp, and J. B. Koster, <u>Annalen</u>, 1974, 1625.
- 4. L. Horner, W. Klink, and H. Hoffmann, <u>Chem. Ber.</u>, 1963, <u>96</u>, 3133; and earlier papers there cited.
- 5. (a) M. P. Savage and S. Trippett, <u>J. Chem. Soc.</u> (C), 1966, 1842 $\,$ (b) for a recent further example, see A. H. Davidson and S. Warren, J.C.S. Chem. Comm., **1975, 148.**
- 6. E. J. Corey and E. Cane, <u>J. Org. Chem.</u>, 1969, <u>34</u>, 3053.
- 7. When the lithio-derivatives of simple alkyl diphenylphosphine oxides are used for olefination, this two-step procedure appears to be necessary; it was also used by the authors of ref. 5b.
- 8. G. Stork and W. N. White, <u>J. Amer. Chem. Soc.</u>, 1956, <u>78</u>, 4609.
- 9. Method of H. Brechbuhler, H. Buchi, E. Hartz, J. Screiber, and A. Eschenmoser, <u>Helv. Chim. Acta</u>, 1965, <u>48</u>, 1746.
- IO. We have also used allylic chlorides and tosylates in this reaction.
- 11. J. V. Frosch, I. T. Harrison, B. Lythgoe, and A. K. Saksena, <u>J.C.S.Perkin I</u>, 1374, 2005.
- 12. A. Windaus and W. Grundmann, Annalen, 1936, 524, 235.
- 13. Attempts to obtain this compound from the triphenylphosphonium bromide corresponding to (8) were not successful.
- 14. I. T. Harrison and B. Lythgoe, <u>J. Chem. Soc.</u>, 1958, 837.
- 15. I. M. Heilbron, R. N. Jones, K. M. Samant, and F. S. Spring, J. Chem. Soc. 1336, 305; A. Windaus and U. Riemann, 2. physiol. Chem., 1942, 2'/4, 206.